NASA Extends Exploration for 8 Planetary Science Missions – Substantial Potential for New Discoveries

Solar System Illustration

An illustration shows our solar system (not to scale). Credit: NASA / JPL-Caltech

Among the missions selected for extension are InSight, NASA's OSIRIS-REx Asteroid Sample Return Mission

NASA’s OSIRIS-REx Asteroid Sample Return Mission. Credit: NASA’s Goddard Space Flight Center

OSIRIS-APEX (Principal Investor: Dr. Daniella DellaGiustina, University of Arizona): The Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) mission is currently on its way back to Earth to deliver samples of the asteroid Bennu that it collected in 2020. Dante Lauretta, OSIRIS-REx PI, will remain in place for the primary mission, while DellaGiustina begins her role as the newly named PI for OSIRIS-APophis EXplorer (OSIRIS-APEX). With a new name to reflect the extended mission’s new goals, the OSIRIS-APEX team will redirect the spacecraft to encounter Apophis, an asteroid roughly 1,200 feet (roughly 370 meters) in diameter that will come within 20,000 miles (32,000 kilometers) of Earth in 2029. OSIRIS-APEX will enter orbit around Apophis soon after the asteroid’s Earth flyby, providing an unprecedented close-up look at this S-type asteroid. It plans to study changes in the asteroid caused by its close flyby of Earth and use the spacecraft’s gas thrusters to attempt to dislodge and study the dust and small rocks on and below Apophis’ surface.

NASA's MAVEN Spacecraft Mars

This illustration shows NASA’s MAVEN spacecraft and the limb of Mars. Credit: NASA / Goddard

MAVEN (Principal Investigator: Dr. Shannon Curry, NASA Mars InSight

This illustration shows NASA’s Mars InSight lander on the Martian surface. Credit: NASA

InSight (Principal Investigator: Dr. Bruce Banerdt, NASA Lunar Reconnaissance Orbiter

NASA’s Lunar Reconnaissance Orbiter has been studying the moon since June 2009. Credit: NASA

Lunar Reconnaissance Orbiter (LRO) (Project Scientist: Dr. Noah Petro, GSFC): LRO will continue to study the surface and geology of the Moon. The evolution of LRO’s orbit will allow it to study new regions away from the poles in unprecedented detail, including the Permanently Shadowed Regions (PSRs) near the poles where water ice may be found. LRO will also provide important programmatic support for NASA’s efforts to return to the Moon.

Curiosity Rock Hall Selfie

A selfie taken by NASA’s Curiosity Mars rover on Sol 2291 at the “Rock Hall” drill site, located on Vera Rubin Ridge. The selfie is composed of 57 individual images taken by the rover’s Mars Hand Lens Imager (MAHLI), a camera on the end of the rover’s robotic arm. Credit: NASA / Caltech-JPL / MSSS

Mars Science Laboratory (MSL) (Project Scientist: Dr. Ashwin Vasavada, JPL): The Mars Science Laboratory and its Curiosity rover have driven more than 16 miles (27 km) on the surface of Mars, exploring the history of habitability in Gale Crater. In its fourth extended mission, MSL will climb to higher elevations, exploring the critical sulfate-bearing layers that give unique insights into the history of water on Mars.

New Horizons Spacecraft

Artist conception of New Horizons Spacecraft. Credit: Johns Hopkins University Applied Physics Laboratory / Southwest Research Institute

New Horizons (Principal Investigator: Dr. Alan Stern, SwRI): New Horizons flew past Odyssey Spacecraft Over Mars' South Pole

NASA’s Mars Odyssey spacecraft passes above Mars’ south pole in this artist’s concept illustration. The spacecraft has been orbiting Mars since October 24, 2001. Credit: NASA / JPL-Caltech

Mars Odyssey (Project Scientist: Dr. Jeffrey Plaut, JPL): Mars Odyssey’s extended mission will perform new thermal studies of rocks and ice below Mars’ surface, monitor the radiation environment, and continue its long-running climate monitoring campaign. The Odyssey orbiter also continues to provide unique support for real-time data relay from other Mars spacecraft. The length of Odyssey’s extended mission may be limited by the amount of propellant remaining aboard the spacecraft.

Mars Reconnaissance Orbiter

This artist’s concept shows NASA’s Mars Reconnaissance Orbiter over the red planet. Credit: NASA / JPL-Caltech

Mars Reconnaissance Orbiter (MRO) (Project Scientist: Dr. Rich Zurek, JPL): MRO has provided a wealth of data regarding the processes on Mars’ surface. In its sixth extended mission, MRO will study the evolution of Mars’ surface, ices, active geology, and atmosphere and climate. In addition, MRO will continue to provide important data relay service to other Mars missions. MRO’s CRISM instrument will be shut down entirely, after the loss of its cryocooler has ended the use of one of its two spectrometers.

NASA’s Planetary Science Division currently operates 14 spacecraft across the solar system, has 12 missions in formulation and implementation, and partners with international space agencies on seven others.

The detailed reports from the 2022 Planetary Science Senior Review may be found at:

https://science.nasa.gov/solar-system/documents/senior-review

Leave a Comment